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Abstract. Traditional measurement of multimedia systems,
such as linear impulse response, transfer function, are suf-
ficient but not faultless. For these methods the pure linear
system is considered. Nonlinearities, which are usually in-
cluded in the most of real systems are disregarded. One of
the simple methods that can describe the nonlinear system
used in practice is coefficient of distortion or intermodula-
tion distortion, but these methods cannot be used to deter-
mine nonlinearities themselves.
This paper describe one of the methods to identify nonlin-
ear systems called Volterra Series. A simplification for this
method is proposed and an experiment with audio amplifier
is shown to test this method.
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1. Introduction
Let multimedia or audio system is a black box for

which there are rules of theory of signal processing. This
black box is time invariant, that means the properties of
black box does not change. Signaly(t) is a response to
a system to the excitationx(t). Any given input xi(t)
produces a unique outputyi(t). Not only one inputx(t) can
produce the same outputy(t), but not vice versa, that means
there is only one responsey(t) to inputx(t).

y(t) =

∞Z
−∞

h1(τ1)x(t− τ1)dτ1

+

∞Z
−∞

∞Z
−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

(1)

+

∞Z
−∞

∞Z
−∞

∞Z
−∞

h3(τ1, τ2, τ3)x(t− τ1)x(t− τ2)x(t− τ3)dτ1dτ2dτ3

...

+

∞Z
−∞

...

∞Z
−∞

hn(τ1, ..., τn)x(t− τ1)...x(t− τn)dτ1...dτn

The black box with its properties can be represented as
shown in Figure 1 in which the symbolHn is called an
Volterra operator. This theory of Volterra series was intro-
duced in [1].
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Fig. 1. Schematic representation of a Volterra series model

The relation between the output and the input can be ex-
pressed in the form given by the total sum

y(t) =
∑

n

Hn[x(t)], (2)

in which

Hn[x(t)] = (3)

=

∞∫

−∞
...

∞∫

−∞
hn(τ1, ..., τn)x(t− τ1)...x(t− τn)dτ1...dτn

representsn-dimensional convolution of the input signal
x(t) and n-dimensional Volterra kernel hn(τ1, ..., τn).
SymbolHn representsn-th orderVolterra operator.

2. First-Order Volterra systems
From now on the only causal, stable and LTI (linear

time invariant)First-Order Volterra systemwill be consid-
ered, for what stands

y(t) = H1[x(t)], (4)
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which can be expanded by usingVolterra operatorH1 into
form

y(t) =

∞∫

−∞
h1(τ)x(t− τ)dτ (5)

This equation represents simple one-dimensional convo-
lution, which determine pure linear system.First-Order
Volterra systemis in general linear system, in whichFirst-
Order Volterra kernelh1(t) is called impulse response of
the system. This impulse response can be obtained by Dirac
impuls excitationδ(t), from

h1(t) = H1[δ(t)] (6)

3. Second-Order Volterra system
A linear system was considered in the last chapter. This

system keeps rules of linear combination. Thats means that
the response to a linear combination of input signals equals
the same linear combinations of response to a input signals.
The Second-Order system does not keep the rules of linear
combination, but bilinear combination. The response to a
linear combination of input signals equals the same bilin-
ear combinations of response to a input signals. Let us take
into consideraton a causal, stable, LTI Second-Order system,
which is defined by

y(t) = H2[x(t)] (7)

OperatorH2 is calledSecond-Order Volterra operator. This
operator is expressed by formula (1)

H2[x(t)] =

∞∫

−∞

∞∫

−∞
h2(τ1, τ2)x(t−τ1)x(t−τ2)dτ1dτ2 (8)

The functionh2(τ1, τ2) is calledSecond-Order Volterra ker-
nel. Generally, this function need not to be axis-symmetric
by axis h2(τ, τ), but for definiteness reasons it should be
better to consider this function as axis-symmetric by axis
h∗2(τ1, τ2). The symmetrisation can be done by

h2(τ1, τ2) =
1
2
[h∗2(τ1, τ2) + h∗2(τ2, τ1)] (9)

From now on the only symmetric kernel will be considered,
for which stands

h2(τ1, τ2) = h2(τ2, τ1)

As known from the theory of linear systems and as it
is described in Eq. (6), there is a possibility to obtain the
impulse response of First-Order system (linear system), as
an response to a Dirac impuls.
Let us take into consideration the input signalx(t) = δ(t),

which is brought into the Second-Order system. The output
is given by

y(t) = H2[δ(t)]

=

∞∫

−∞

∞∫

−∞
h2(τ1, τ2)δ(t− τ1)δ(t− τ2)dτ1dτ2

= h2(t, t) (10)

The response to the Dirac impuls does not determinate the
Second-Order system, but represents just a slice through the
axis ofSecond-Order Volterra kernel(see. Figure). Let the

Fig. 2. Example of Second-Order Volterra Kernel

input signalx(t) is given by sum of two signalsx1(t)+x2(t).
The response to such a signal is given by

y(t) = H2[x(t)] = H2[x1(t) + x2(t)] =
= H2{x1(t), x1(t)}+ 2H2{x1(t), x2(t)}+
+ H2{x2(t), x2(t)}
= H2[x1(t)] + 2H2{x1(t), x1(t)}+ H2[x2(t)]

(11)

in which H2{·} is bilinear Volterra operator, which is de-
fined by

H2{x1(t), x2(t)} =

=

∞∫

−∞

∞∫

−∞
h2(τ1, τ2)x1(t− τ1)x2(t− τ2)dτ1dτ2

(12)

Thence

H2{x1(t), x1(t)} = H2[x1(t)] (13)

thusbilinear Volterra operatorapplied to two same signals
is simply speakingSecond-Order Volterra operator.
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4. Higher-Order Volterra Systems
Generally the Higher-Order system can be considered,

but the complexity gets higher as the order of system in-
creases. Also the imagination of a representation of the
higher order is more difficult, for the dimension is higher.
The analysis of finding all another kernels is based on find-
ing the higher-order kernel and then recursively on finding
lower-order kernels.

5. A simplified model
Since then-th Volterra kernel is a function ofn vari-

ables, the model which represents the system has to contain a
lot of coefficients needs to determinate the system. This sec-
tion describes a simplified model, which reduces the number
of coefficients required for a Volterra series representation.

The first simplification replaces then-th Volterra kernel
by its symmetric representation. The Second-Order Volterra
kernel will be reduced to

h2(τ1, τ2) = h′2(τ1) · h′2(τ2) (14)

This is demonstrated in Figure 3 showing the sub-kernel
h′2(τ) and kernelh2(τ1, τ2).
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Fig. 3. The demonstration of kernel simplification

Generally for higher Volterra kernels stands that

hn(τ1, τ2, ..., τn) =
∏
n

h′n(τ) (15)

(·)2h′2(τ)

Fig. 4. Schematic representation of a simplification of a second
kernel

(·)nh′n(τ)

Fig. 5. Schematic representation of a simplification of a general
kernel

The output signal of the Second-Order System is

y(t) =

∞Z
−∞

∞Z
−∞

h2(τ1, τ2)x(t− τ1)x(t− τ2)dτ1dτ2

=

∞Z
−∞

∞Z
−∞

h′2(τ1)h
′
2(τ2)x(t− τ1)x(t− τ2)dτ1dτ2

=

∞Z
−∞

h′2(τ1)x(t− τ1)dτ1 ·
∞Z

−∞

h′2(τ2)x(t− τ2)dτ2

= [

∞Z
−∞

h′2(τ)x(t− τ)dτ ]2 (16)

This equation is schematically shown in Figure 4 or in gen-
eral in Figure 5.

The whole simplified Volterra model

The scheme from Figure 1 can be simplified by using
the simplifications described above. The model then will not
be the same as regular Volterra model, but the reduced one.
The simplified Volterra model is not able to determine all
the nonlinearities in the same manner as the regular Volterra
model [1]. Besides, the simplified model cannot determinate
another nonlinearities, but it will be shown that in some cases
such as analysis of an amplifier in weakly nonlinear mode
the simplified model is sufficiently precise.
The simplified model is shown in Figure 6

h′1(t)x(t) y(t)
∑

h′2(t)

h′3(t)

h′N (t) (·)N

(·)2

(·)3

Fig. 6. The whole simplified Volterra model

The outputy(t) is given by

y(t) =

∞Z
−∞

h′1(τ)x(t− τ)dτ

+ [

∞Z
−∞

h′2(τ)x(t− τ)dτ ]2 (17)

...

+ [

∞Z
−∞

h′N (τ)x(t− τ)dτ ]N
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that can be rewritten into shorten form

y(t) =
N∑

n=1

[

∞∫

−∞
h′n(τ)x(t− τ)dτ ].n (18)

6. Measuring of non-linear audio sys-
tems

Next section deals with using the theory described
above. The real systems used in audio / multimedia has been
measured. The method gives sufficiently precise results with
respect to weak nonlinear mode. If the higher kernels are
too feeble, that means if the nonlinearity is weak, it is better
to use the simplest model, as the higher kernels are near the
level of noise.
The method using first kernel and the set of coefficients for
determinate the higher kernels has been verified on SONY
SDP-300, used in the amplifier mode.

DAC
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Computer Amplifier

x(t)

y(t)

Fig. 7. Scheme of measured system
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Fig. 8. The first kernel of SONY SDP-300 amplifier

0 0.5 1 1.5 2 2.5

x 10
4

−45

−40

−35

−30

−25

−20

−15

−10

−5

0

5

frequency [Hz]

m
ag

ni
tu

de
 H

(f
) 

[d
B

]

Fig. 9. Transfer function calculated from the first kernel of
SONY SDP-300 amplifier

To verify the simplified Volterra model a comparison
between an audio amplifier and the Volterra model has to be
realized. The input signal including two harmonic signals
has been put into the audio amplifier and also into the model
and the output spectrum of both has been compared. Results
are shown in Figures 10-13.
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Fig. 10. Comparison of responses to200Hz and1kHz tones:
SONY SDP-300 - above, model - below
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Fig. 11. Comparison of responses to200Hz and1kHz tones:
SONY SDP-300 - above, model - below, zoomed up to
-100 dB
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Fig. 12. Comparison of responses to500Hz and2kHz tones:
SONY SDP-300 - above, model - below, zoomed up to
-100 dB
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Fig. 13. Comparison of responses to1kHz and 5kHz tones:
SONY SDP-300 - above, model - below, zoomed up to
-100 dB

7. Conclusion
In this paper the simplification of Volterra kernels has

been presented. The simplification of kernels can be used
only in systems with weak nonlinearities which can be found
in multimedia systems such as amplifiers, loudspeakers etc.
The results of the nonlinear model are in some cases (weak
nonlinearities) very similar to real system, but in cases of
more complex nonlinearities, the model gives worse results
and the simplification can not be applied.
The model can be also used to produce the nonlinearities in
order to create audio-testing and to observe the impact of
various nonlinearities from listener’s point of view.
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l’Univeristé du Maine.


