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Abstract. Traditional measurement of multimedia systems, The black box with its properties can be represented as
such as linear impulse response, transfer function, are sushown in Figure 1 in which the symbd¥,, is called an
ficient but not faultless. For these methods the pure lineaklterra operator This theory of Volterra series was intro-
system is considered. Nonlinearities, which are usually induced in [1].
cluded in the most of real systems are disregarded. One of

the simple methods that can describe the nonlinear system

used in practice is coefficient of distortion or intermodula-

tion distortion, but these methods cannot be used to deter-

mine nonlinearities themselves. X mﬂ@%y(t)

This paper describe one of the methods to identify nonlin-

ear systems called Volterra Series. A simplification for this

method is proposed and an experiment with audio amplifier %

is shown to test this method.

Keywords Fig. 1. Schematic representation of a \olterra series model

Nonlinear, Volterra Series, systems, identification.

The relation between the output and the input can be ex-
pressed in the form given by the total sum

1. Introduction

o , | y(t) =) Halz(1)], 2)
Let multimedia or audio system is a black box for n
which there are rules of theory of signal processing. This _
black box is time invariant, that means the properties ofn which
black box does not change. Signglt) is a response to
a system to the excitatiom(¢). Any given inputx;(t) H,[z(t)] = 3)
produces a unique outpyt(¢). Not only one inputc(¢) can s oo
produce the same outpyft), but not vice versa, that means _ B B
there is only one respongét) to inputz(t). = | o [ Pl T2t = 7)(t = T )dr o d
y(t) = / ha(m)z(t — m1)dm representsi-dimensional convolution of the input signal
—oo x(t) and n-dimensional Volterra kernel h,, (71, ..., 7).
oo oo SymbolH,, representa-th order\Volterra operator
+ / / ho (11, m2)x(t — 71)x(t — T2)dT1dT2

M

‘ +

8 ~~—3
|
g3

/ h,3(7'17 7-277-3)55(t — Tl)z(t — TQ)z(t — Tg)dTldTQdTg 2. FIrSt-Order VOIterra Systems

From now on the only causal, stable and LTI (linear
: time invariant)First-Order Volterra systenwill be consid-
o oo ered, for what stands
+ hn (71, ooty Tn)z(t — 71)...x(t — Tn)dT1...dTn
7[0 7[0 y(t) = Ha[z(t)], 4)



2 3 SECOND-ORDER VOLTERRA SYSTEM

which can be expanded by usinglterra operatorH; into  which is brought into the Second-Order system. The output

form is given by
t) = hi(T)z(t — 7)dr 5
—o0 co oo
This equation represents simple one-dimensional convo- = / /hz(T1,Tz)5(t—T1)5(t—72)dﬁd72
lution, which determine pure linear systentirst-Order oo —o0
Volterra systenis in general linear system, in whidfirst- = hy(t,t) (10)

Order Volterra kernelh,(t) is called impulse response of
the system. This impulse response can be obtained by Dirac

impuls excitations(¢), from The response to the Dirac impuls does not determinate the
Second-Order system, but represents just a slice through the
hi(t) = Hy[8(2)] (6)  axis ofSecond-Order Volterra kernésee. Figure). Letthe
h2(t1,12)

3. Second-Order Volterra system

A linear system was considered in the last chapter. This
system keeps rules of linear combination. Thats means that
the response to a linear combination of input signals equals
the same linear combinations of response to a input signals.
The Second-Order system does not keep the rules of linear
combination, but bilinear combination. The response to a
linear combination of input signals equals the same bilin- o
ear combinations of response to a input signals. Let us take
into consideraton a causal, stable, LTI Second-Order system,
which is defined by

Fig. 2. Example of Second-Order Volterra Kernel

y(t) = Ha[z(t)] @)

OperatorH is calledSecond-Order Volterra operatot his

operator is expressed by formula (1) input signalz(t) is given by sum of two signals, (t)+z(%).

The response to such a signal is given by

Ha[z(t)] = / / ho(T1, To)x(t—T1)2(t—T2)dm1dTa (8)  y(t) = Ha[z(t)] = Ha[z1(t) + 22(t)] =
—00 —00 = Hg{l‘l(t), .231(7,‘)} + 2H2{.7J1(t), Qfg(t)}—F

The functionh, (71, 72) is calledSecond-Order Volterra ker- + Hz{z2(t), 22(8)}

nel. Generally, this function need not to be axis-symmetric = Hz[z1(¢)] + 2Hz{z1(t), 21()} + Ha[xa(t)]

by axis hy (7, 7), but for definiteness reasons it should be

better to consider this function as axis-symmetric by axisn which H,{-} is bilinear Volterra operator which is de-

11)

hs (71, 72). The symmetrisation can be done by fined by
1 * *
ha(11,72) = 5[ha (71, 72) + hy (72, 71)] 9) Hao a1 (1), 22(t)} =
From now on the only symmetric kernel will be considered, — _ / / ho(r1, 7)1 (t — 71)a(t — ) dmrdrs (12)
for which stands ’
ha(71,72) = ha(2, 1)
Thence
As known from the theory of linear systems and as it Ha{a1 (1), 21(t)} = Ha[z1(t)] (13)

is described in Eq. (6), there is a possibility to obtain the
impulse response of First-Order system (linear system), as
an response to a Dirac impuls. thusbilinear Volterra operatorapplied to two same signals

Let us take into consideration the input sign@) = 4(t),  is simply speakingecond-Order Volterra operator
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4. Higher-Order Volterra Systems The output signal of the Second-Order System is
Generally the Higher-Order system can be considered, - r7 B _
but the complexity gets higher as the order of system in- v = ha(r1, 72)2(t = m)a(t — o)dndrs

creases. Also the imagination of a representation of the
higher order is more difficult, for the dimension is higher.
The analysis of finding all another kernels is based on find-
ing the higher-order kernel and then recursively on finding
lower-order kernels.

hIQ(Tl)hIQ(TQ)l’(t — Tl)x(t — Tz)d’7'1d’7'2
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oo

/ ho(m)z(t — 11)dT1 - / hy(12)x(t — T2)dT2

—0o0

(oo}

[ / (r)a(t — r)dr]? (16)

— o0

5. A simplified model

Since then-th Volterra kernel is a function of vari-
ables, the model which represents the system has to contain{iS quation is schematically shown in Figure 4 or in gen-
lot of coefficients needs to determinate the system. This se€’al in Figure 5.
tion describes a simplified model, which reduces the number
of coefficients required for a Volterra series representation.

The first simplification replaces theth Volterra kernel  The whole simplified Volterra model
by its symmetric representation. The Second-Order Volterra

kernel will be reduced to The scheme from Figure 1 can be simplified by using
the simplifications described above. The model then will not
ho(T1,72) = (1) - hh(72) (14)  be the same as regular Volterra model, but the reduced one.

The simplified Volterra model is not able to determine all
This is demonstrated in Figure 3 showing the sub-kerneihe nonlinearities in the same manner as the regular Volterra
h, () and kernehs (11, 7). model [1]. Besides, the simplified model cannot determinate

another nonlinearities, but it will be shown that in some cases

such as analysis of an amplifier in weakly nonlinear mode

the simplified model is sufficiently precise.

The simplified model is shown in Figure 6

- Wy () = (O

]

| hs(t) | ()°

el Byt | (2

_—

(a) sub-kernel (b) kernel
t) ——| hj(t) ————> : f— t
Fig. 3. The demonstration of kernel simplification z(?) n(t) y(®)
Generally for higher Volterra kernels stands that Fig. 6. The whole simplified Volterra model
ho(T1, T2y ey Tn) = Hh;L(T) (15) L
- The outputy(t) is given by
yt) = / Ry (T)x(t — T)dT
/ 2
—1 hy(7) () ES
/ 2
Fig. 4. Schematic representation of a simplification of a second + [/ ha(T)a(t — 7)dr] an
kernel —oo

— ha(7) ()"

Fig. 5. Schematic representation of a simplification of a general —o00
kernel
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To verify the simplified Volterra model a comparison
that can be rewritten into shorten form between an audio amplifier and the Volterra model has to be
realized. The input signal including two harmonic signals
has been put into the audio amplifier and also into the model
, and the output spectrum of both has been compared. Results
ho (T)2(t — 7)dT]." (18)  are shown in Figures 10-13.
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6. Measuring of non-linear audio sys-
tems
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Next section deals with using the theory described
above. The real systems used in audio / multimedia has been
measured. The method gives sufficiently precise results with
respect to weak nonlinear mode. If the higher kernels are
too feeble, that means if the nonlinearity is wealk, it is better
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to use the simplest model, as the higher kernels are near the * Trequency [H2] 10K
level of noise.
The method using first kernel and the set of coefficients for Fig. 10. Comparison of responses 800H z and 1kH z tones:
determinate the higher kernels has been verified on SONY SONY SDP-300 - above, model - below
SDP-300, used in the amplifier mode.
Computer Amplifier
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Fig. 11. Comparison of responses 20H z and 1k H z tones:
0.4t 1 SONY SDP-300 - above, model - below, zoomed up to
-100 dB
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Fig. 8. The first kernel of SONY SDP-300 amplifier £ -eor
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Fig. 12. Comparison of responses 500H z and 2k H z tones:

0 05 1 15 2 25 SONY SDP-300 - above, model - below, zoomed up to
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Fig. 9. Transfer function calculated from the first kernel of
SONY SDP-300 amplifier
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and the simplification can not be applied.

The model can be also used to produce the nonlinearities
order to create audio-testing and to observe the impact
various nonlinearities from listener’s point of view.



